Corrigé du DM n°1

Correction 1.

1.
$$x_I = \frac{x_A + x_B}{2} = \frac{-2 + 1}{2} = -\frac{1}{2}$$
 et $y_I = \frac{y_A + y_B}{2} = \frac{0 + 4}{2} = 2$ et $z_I = \frac{z_A + z_B}{2} = \frac{3 - 1}{2} = 1$.

Donc $I\left(-\frac{1}{2}; 2; 1\right)$

De même,
$$x_J = \frac{-2+2}{2} = 0$$
 et $y_J = \frac{0+1}{2} = \frac{1}{2}$ et $z_J = \frac{3+5}{2} = 4$ donc $J\left(0; \frac{1}{2}; 4\right)$.

2.
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2 + (z_C - z_A)^2}$$

 $= \sqrt{(2 - (-2))^2 + (1 - 0)^2 + (5 - 3)^2}$
 $= \sqrt{16 + 1 + 4}$
 $= \sqrt{21}$

$$BJ = \sqrt{(0-1)^2 + \left(\frac{1}{2} - 4\right)^2 + (4 - (-1))^2}$$

$$= \sqrt{1 + \left(-\frac{7}{2}\right)^2 + 25}$$

$$= \sqrt{\frac{4}{4} + \frac{49}{4} + \frac{100}{4}}$$

$$= \sqrt{\frac{153}{4}}$$

$$= \frac{\sqrt{153}}{2}$$

3.
$$\overrightarrow{AB} = \begin{pmatrix} 1 - (-2) \\ 4 - 0 \\ -1 - 3 \end{pmatrix} = \boxed{\begin{pmatrix} 3 \\ 4 \\ -4 \end{pmatrix}}$$

$$\overrightarrow{BC} = \begin{pmatrix} 2 - 1 \\ 1 - 4 \\ 5 - (-1) \end{pmatrix} = \boxed{\begin{pmatrix} 1 \\ -3 \\ 6 \end{pmatrix}}$$

$$\overrightarrow{AC} = \begin{pmatrix} 2 - (-2) \\ 1 - 0 \\ 5 - 3 \end{pmatrix} = \boxed{\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}}$$

$$2\overrightarrow{AB} - 3\overrightarrow{AC} = 2\begin{pmatrix} 3 \\ 4 \\ -4 \end{pmatrix} - 3\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \boxed{\begin{pmatrix} -6 \\ 5 \\ -14 \end{pmatrix}}$$

4.
$$\overrightarrow{u} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix} \operatorname{donc} -\frac{3}{2} \overrightarrow{u} = \begin{pmatrix} -6 \\ 3 \\ -9 \end{pmatrix}$$
. Et $\overrightarrow{AD} = \begin{pmatrix} x_D - (-2) \\ y_D - 0 \\ z_D - 3 \end{pmatrix}$.

Or on veut
$$\overrightarrow{AD} = -\frac{3}{2}\overrightarrow{u}$$
.

Donc $\begin{cases} x_D + 2 = -6 \\ y_D - 0 = 3 \\ z_D - 3 = -9 \end{cases}$ donc $\begin{cases} x_D = -6 - 2 \\ y_D = 3 \\ z_D = -9 + 3 \end{cases}$ donc $D(-8; 3; -6)$.

Correction 2.

- **1.** Dans la base $\mathcal{B}: \overrightarrow{u} = -3 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} -3 \\ 4 \end{pmatrix} 5 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -17 \\ 4 \end{pmatrix}$
- **2.** Les coordonnées de $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ ne sont pas proportionnelles $\left(-\frac{3}{2} \times 2 = -3 \text{ mais } -\frac{3}{2} \times 3 \neq 4\right)$. Donc $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ ne sont pas colinéaires, donc $|(\overrightarrow{u_1}, \overrightarrow{u_2})|$ est une base du plan
- **3.** On note (x,y) les coordonnées de $\overrightarrow{\imath}$ dans la base \mathcal{B}' : alors $\overrightarrow{\imath}=x\overrightarrow{u_1}+y\overrightarrow{u_2}$ Donc $\begin{pmatrix} 1 \\ 0 \end{pmatrix}_{R} = x \begin{pmatrix} 2 \\ 3 \end{pmatrix}_{R} + y \begin{pmatrix} -3 \\ 4 \end{pmatrix}_{R}$ soit $\begin{cases} 1 = 2x - 3y & (1) \\ 0 = 3x + 4y & (2) \end{cases}$

D'après (2),
$$x=-\frac{4}{3}y$$
 donc en remettant dans (1), $1=2\times(-\frac{4}{3}y)-3y$
$$1=\frac{-8}{3}y-\frac{9}{3}y$$

$$1=-\frac{17}{3}y$$

$$y=-\frac{3}{17}$$

Donc
$$x = -\frac{4}{3} \times \left(-\frac{3}{17}\right) = \frac{4}{17}$$
.

Donc les coordonnées de $\overrightarrow{\iota}$ dans la base \mathcal{B}' sont $\left(\frac{4}{17}; \frac{-3}{17}\right)$

• Coordonnées de \overrightarrow{v} : on cherche x et y tels que $\overrightarrow{v} = x\overrightarrow{u_1} + y\overrightarrow{u_2}$. $\overrightarrow{v} = x\overrightarrow{u_1} + y\overrightarrow{u_2} \Longleftrightarrow \begin{pmatrix} 1 \\ -1 \end{pmatrix} = x \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -3 \\ 4 \end{pmatrix} \Longleftrightarrow \begin{cases} 1 = 2x - 3y \ (1) \\ -1 = 3x + 4y \ (2) \end{cases}$ D'après (1), 2x = 1 + 3y donc $x = \frac{1}{2} + \frac{3}{2}y$.

En remplaçant dans (2),
$$-1 = 3\left(\frac{1}{2} + \frac{3}{2}y\right) + 4y$$

 $-1 = \frac{3}{2} + \frac{9}{2}y + \frac{8}{2}y$
 $-\frac{5}{2} = \frac{17}{2}y$
 $y = -\frac{5}{17}$

Donc
$$x = \frac{1}{2} + \frac{3}{2} \times \left(-\frac{5}{17}\right) = \frac{17}{34} - \frac{15}{34} = \frac{2}{34} = \frac{1}{17}.$$

Donc les coordonnées de \overrightarrow{v} dans la base \mathcal{B}' sont $\left(\frac{1}{17}; \frac{-5}{17}\right)$.

• $\overrightarrow{u} = -3\overrightarrow{u_1} + 2\overrightarrow{u_2} - 5\left(\frac{1}{17}\overrightarrow{u_1} - \frac{5}{17}\overrightarrow{u_2}\right) = \left(-3 - \frac{5}{17}\right)\overrightarrow{u_1} + \left(2 + \frac{25}{17}\right)\overrightarrow{u_2} = -\frac{56}{17}\overrightarrow{u_1} + \frac{59}{17}\overrightarrow{u_2}.$ Donc les coordonnées de \overrightarrow{u} dans la base \mathcal{B}' sont $\left(-\frac{56}{17}; \frac{59}{17}\right)$.

Correction 3.

- **1.** $(\overrightarrow{u}, \overrightarrow{v})$ est une base du plan puisque les deux vecteurs ne sont pas colinéaires.
- 2. (a) $\overrightarrow{\Omega A} = \overrightarrow{\Omega O} + \overrightarrow{OA} = -\overrightarrow{O\Omega} + \overrightarrow{OA} = -3\overrightarrow{\imath} \overrightarrow{\jmath} + 2\overrightarrow{\imath} 3\overrightarrow{\jmath} = -\overrightarrow{\imath} 4\overrightarrow{\jmath}$ $\overrightarrow{Donc} A(-1, -4)_{\mathcal{R}_1}.$
 - **(b)** On cherche x et y tels que $\overrightarrow{OA} = x\overrightarrow{u} + y\overrightarrow{v}$ soit $\begin{pmatrix} 2 \\ -3 \end{pmatrix}_{(\overrightarrow{v},\overrightarrow{f})} = x \begin{pmatrix} 2 \\ 1 \end{pmatrix}_{(\overrightarrow{v},\overrightarrow{f})} + y \begin{pmatrix} -1 \\ 3 \end{pmatrix}_{(\overrightarrow{v},\overrightarrow{f})}$. Donc on résout $\begin{cases} 2 = 2x y \\ -3 = x + 3y \end{cases}$. On trouve $x = \frac{3}{7}$ et $y = -\frac{8}{7}$, donc $A \begin{pmatrix} \frac{3}{7}, -\frac{8}{7} \end{pmatrix}_{\mathcal{R}_2}$.
 - (c) On cherche x et y tels que $\overrightarrow{\Omega A} = x\overrightarrow{u} + y\overrightarrow{v}$ c'est-à-dire, en prenant les coordonnées dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath})$, $\begin{cases} -1 = 2x y \\ -4 = x + 3y \end{cases}$ On trouve x = y = -1 donc $A(-1, -1)_{\mathcal{R}_3}$.