ESPACES VECTORIELS.

B - Familles de vecteurs

Exercice basique à savoir refaire ★ Exercice non indispensable

Exercice 1.

Soient $v_1 = (2, 1, 4)$, $v_2 = (1, -1, 2)$ et $v_3 = (3, 3, 6)$ des vecteurs de \mathbb{R}^3 . Trouver trois réels non tous nuls α, β, γ tels que $\alpha v_1 + \beta v_2 + \gamma v_3 = 0$.

Que peut-on en déduire pour la famille (v_1, v_2, v_3) ?

Exercice 2.

Les familles suivantes sont-elles libres?

- **1.** famille (P, Q, R) avec $P = 1 + X^2$, $Q = X^2$ et R = 2 + 3X.
- **2.** famille (A, B, C) avec $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} -5 & 0 & -8 \\ 2 & 14 & -7 \end{pmatrix}$ et $C = \begin{pmatrix} -1 & 3 & 2 \\ 1 & 4 & 1 \end{pmatrix}$.

Exercice 3.

Les familles suivantes sont-elles libres ? génératrices ? de l'espace vectoriel E.

- **1.** $E = \mathbb{R}^{\mathbb{N}}$, on considère la famille (u, v) où $\forall n \in \mathbb{N}, u_n = n^2$ et $v_n = n + 1$;
- **2.** $E = \mathbb{R}^{\mathbb{R}}$, la famille considérée est (f_1, f_2, f_3) où $\forall k \in \{1, 2, 3\}, \forall x \in \mathbb{R}, f_k(x) = e^{kx}$.

★ Exercice 4.

Soit E le \mathbb{R} espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

On note $f_1: x \mapsto \sin(x)$ et $f_2: x \mapsto \cos(x)$. Dans le cours nous avons vu que f_1 et f_2 forment une famille libre.

- **1.** On définit pour tout entier naturel p la fonction $g_p : x \mapsto \sin(x+p)$. Montrer que $\forall p \in \mathbb{N}, g_p \in \text{Vect}(f_1, f_2)$.
- **2.** Pour tout n de \mathbb{N} , on note \mathcal{G}_n la famille $(g_p)_{p \in [0,n]}$. Montrer que \mathcal{G}_0 et \mathcal{G}_1 sont deux familles libres.

Montrer que pour $n \geqslant 2$, \mathcal{G}_n est liée (on pourra auparavant démontrer que $\text{Vect}(\mathcal{G}_1) = \text{Vect}(f_1, f_2)$).

Exercice 5.

- **1.** (a) Déterminer l'ensemble F des solutions du système $\begin{cases} x+3y-z=0\\ 2x+5y+3z=0 \end{cases}.$
 - (b) Justifier que F est un espace vectoriel et en déterminer une base.
- **2.** On considère les deux plans vectoriels P_1 et P_2 d'équations respectives x y + z = 0 et x y = 0. Trouver un vecteur directeur ainsi qu'une équation paramétrée de la droite $D = P_1 \cap P_2$.
- **3.** Montrer que $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y z t = 0 \text{ et } x + 2y + 3z + t = 0\}$ est un sous-espace vectoriel de \mathbb{R}^4 et en déterminer une base.

Exercice 6.

Montrer que les polynômes $P_0 = 1$, $P_1 = 1 + X$ et $P_2 = 1 + X + X^2$ forment une base de $\mathbb{R}_2[X]$ et préciser les coordonnées de $P = aX^2 + bX + c$ dans cette base.

Exercice 7.

On se place dans $E = \mathbb{R}_3[X]$, et on note $F = \{P \in E \mid P(1) = 0\}$.

Montrer que F est un sous-espace vectoriel de E et déterminer une base de F.

★ Exercice 8.

Montrer que les vecteurs $v_1=(1,-1,i), v_2=(-1,i,1)$ et $v_3=(i,1,-1)$ forment une base de \mathbb{C}^3 (vu comme un \mathbb{C} -espace vectoriel.

Calculer les coordonnées de u = (1 + i, 1 - i, i) dans cette base.