Ensembles.

- Exercice basique à savoir refaire
- ★ Exercice un peu plus difficile, non indispensable

Quelques ensembles connus.

N:

R:

Q:

Z:

C:

Exercice 1.

- **1.** $1, 4 \dots \mathbb{R}$; $-3 \dots \mathbb{Q}$; $0 \dots \mathbb{R}^{+*}$; $1 \dots \mathbb{N}^*$; $\frac{-6}{3} \dots \mathbb{Z}$; $\pi \dots \mathbb{Q}$

 $\mathcal{P}(E) = \dots$

- **3.** $I = [-3; 4[: alors -1, 4 \dots I : ; 4 \dots I : ; -3 \dots I :] -1; 2[\dots I : [0; 4] \dots I$

Exercice 2.

Soient les ensembles $A = \{1; 2; 3\}, \ B = \{1; 2; 3; 4; 5; 6\}, \ C = \emptyset, \ D = \{3; 4; 5; 7\}, \ E = \{4; 6; 8\}.$

- **1.** Décrire $\mathcal{P}(A)$, l'ensemble des parties de A.
- **2.** Décrire les ensembles $A \cup B$, $A \cap C$, $B \cup D$, $B \cap A$, $E \cap (B \cup D)$, $(E \cap B) \cup D$, $E \cup (B \cap D)$, $(E \cup B) \cap D$.

Exercice 3.

Écrire plus simplement les ensembles suivants :

$$A = \{x \in \mathbb{Z} \mid 1 \leqslant x^2 < 12\} \quad ; \quad B = \{x \in \mathbb{R} \mid x^2 = 2\} \quad ; \quad C = \{x \in \mathbb{Z} \mid x^2 = 5\}$$

$$D = \{x \in \mathbb{R} \mid -x^2 - 3x + 4 \ge 0 \text{ et } x + 3 \le 0\} \quad ; \quad E = \{x \in \mathbb{R} \mid -x^2 + 3x + 4 \le 0 \text{ ou } x + 1 < 0\}$$

$$F = \left\{ x \in \mathbb{R} \mid \sin(2x) = \frac{1}{2} \right\} \quad ; \quad G = \left\{ x \in \mathbb{R} \mid -2x^2 + 2x - \frac{1}{2} \geqslant 0 \right\}$$

$$H = \{ x \in \mathbb{Z} \, | \, x^2 + \tfrac{8}{3}x - 1 < 0 \} \cap \{ x \in \mathbb{R} \, | \, x + 1 \geqslant 0 \}$$

Exercice 4.

On note $A = \{10p, p \in \mathbb{N}\}$ et $B = \{2p, p \in \mathbb{N}\}$. Est-ce que $A \subset B$? ou $B \subset A$? le prouver.

Exercice 5.

Soient A et B deux ensembles, on suppose que $A \cup B = A \cap B$. Montrer que A = B.

★ Exercice 6.

Soient A, B et C trois ensembles, on suppose que $A \cap B = A \cap C$ et $A \cup B = A \cup C$. Montrer que B = C.

Exercice 7.

Soient A et B deux parties d'un ensemble E.

On définit la **différence symétrique** de A et B, notée $A\Delta B$ par $A\Delta B = (A \backslash B) \cup (B \backslash A)$.

- **1.** Représenter par une figure $A\Delta B$ pour deux ensembles A et B.
- **2.** Que vaut $A\Delta B$ si $A \subset B$?
- **3.** Que vaut $A\Delta\emptyset$? Que vaut $A\Delta E$?