Programme de la semaine 16 du 10 au 14 février.

Calculs : un de chaque série, au choix de l'examinateur.

1. Calculer z^2 et donner le résultat sous forme algébrique :

(a)
$$z = (3 + \sqrt{2}) + i(1 - 2\sqrt{2})$$
 (b) $z = (-1 + \sqrt{3}) + i\frac{\sqrt{3}}{3}$ (c) $z = (1 + \sqrt{3}) - i\frac{\sqrt{2}}{3}$

(b)
$$z = (-1 + \sqrt{3}) + i\frac{\sqrt{3}}{3}$$

(c)
$$z = (1 + \sqrt{3}) - i\frac{\sqrt{2}}{3}$$

2. Déterminer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -3 & 6 & 2 \\ 2 & -5 & 10 & 3 \\ 3 & -8 & 17 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 4 \\ -1 & 3 \\ -2 & 1 \end{pmatrix}.$$

Questions de cours : 2 au choix de l'examinateur

Nombres complexes 2 : calculs trigonométriques et équations.

Algèbre 2 : familles de vecteurs de \mathbb{R}^n .

combinaisons linéaires et familles libres ou liées.

Questions d'application directe du cours :

- linéariser $\cos^n(x)$ ou $\sin^n(x)$ et en déduire des primitives ;
- dé-linéariser $\cos(nx)$ ou $\sin(nx)$;
- résoudre une équation de type $z^2 = \omega$;
- résoudre une équation de type $az^2 + bz + c = 0$ avec a, b et c complexes ;
- résoudre une équation de type $z^n = \rho e^{i\theta}$.

Thèmes généraux des exercices :

- nombres complexes (tout);
- application de la linéarisation aux équations différentielles ou primitives (guider et faire des rappels si besoin);
- pivots de Gauss.

Barème: calculs 4 points, cours 6 points, exercices 10 points.

Bon courage!